	Keywords for Periodic Trends				
Chapter	Concept	Keywords	Explanation		
Periodic Trends	Atomic Radius	ENC, shielding electrons and number of protons	 -Across the period, atomic size become smaller due to larger ENC because of increased # of protons (nuclear charge) and same # of shielding electrons - Down a group, atomic size becomes larger due to increased size of electron cloud. This is due to increased # of e, causing greater e-e repulsion. # of protons (nuclear charge) increases down a group as well as the # of shielding electrons. These two factors cancel each other's effect causing no significant change in ENC. 		
	Cationic Radius	Lesser e-e repulsion	- Cationic radius is smaller than atomic radius due to lesser e-e repulsion (lesser # of e)		
	Anionic Radius	Larger e-e repulsion	- Anionic radius is larger than atomic radius due to greater e-e repulsion, hence increasing the size of the electron cloud.		
	Ionization Energy	Larger ENC, higher IE $A(g) \rightarrow A^+(g) + e$	 - IE increases across the period, due to higher ENC, making it harder to remove an electron - IE decreases down a group due to the larger atomic size, making it easier to remove an e 		
	Electron Affinity	Coulomb's Law $F=k.q_1. q_2/r^2$ $A(g) + e \rightarrow A^-(g) +$ energy	 EA is the amount of energy released when an e is added to a neutral atom in its gaseous state. The larger the negative value of EA, the higher the EA Nonmetals have higher EA than the metals, due to smaller size of atom and greater attraction for incoming e to the atom. 		
	Exceptions in IE	Between groups 2 and 3 - lesser penetration of p orbital e in the nuclear region as compared to the s e	- Between groups 2 and 3: There is drop in IE because e is removed from p v. s orbital. P orbital electrons do not penetrate the nuclear region the same way as the s electrons due to their dumbbell shape.		
		Between groups 15 and 16- e-e repulsion from the paired p orbital	- IE drops between group 15 and 16 because of e-e repulsion in the paired p orbital e in group 16 makes it easier to remove an e.		
	Exceptions in EA		- EA decreases between group 1 and 2 because e added to the p orbital in group 2 do not penetrate the nuclear region the same way as the s electrons do.		

©Kavita Gupta 2014. All rights reserved.

		effectively as s electrons due to lesser penetration in the nuclear region. Between groups 14 and 15: pairing of e in an already occupied p orbital makes it harder (lesser EA) for the	- EA decreases between groups 14 and 15 because e are added to half-filled p orbital in group 15 causes e-e repulsion.
IMFs	Ion-Ion attraction, Ion- dipole, dipole- dipole, H bonding	incoming e Coulomb's Law $F= k.q_1. q_2/r^2$	-Greater the charge and smaller the distance between two charged particles, greater the force of attraction.
	LDFs	Electron cloud distortion, induced polarity	- Greater # of e cause increase <i>polarizability</i> , which results into greater e cloud distortion hence a greater induced LDF. (Just writing that an atom has more LDFs because of larger molar mass is not sufficient.)
Bonding	Ionic, Covalent, Metallic	Coulomb's Law $F=k.q_1. q_2/r^2$	-Greater the charge and smaller the distance between two charged particles, greater the force of attraction.
	Ionic Bond Strength	Lattice Energy	Unit of ionic compounds: Formula Unit
	Covalent Bond Strength	Bond Energy	Unit of molecular compound: Molecule
Gases	Real Gases v. Ideal Gases	Volume	Real gases have larger volume as compared to ideal gases due to non negligible volume of the gas particles; hence a correction term is subtracted from the volume of the real gases in the Van Der Waals equation.
			- Real gases have lesser pressure than ideal gases due to non negligible IMFs; hence a

©Kavita Gupta 2014. All rights reserved.

	Pressure	correction term is added to the pressure of the real gases in the Van Der Waals equation.

©Kavita Gupta 2014. All rights reserved.